
DoD Data & Analysis Center for Software

An Analysis of Two Formal Methods:
VDM and Z

13 August 1997

Authored by:
Thomas McGibbon

ITT Industries - Systems Division

An Analysis of Two Formal Methods:
VDM and Z

Contract Number F30602-89-C-0082
(Data & Analysis Center for Software)

Prepared for:
Ai r Force Research Laboratory -

Information Di rectorate (AFRL/IF)
525 Brooks Road

Rome, NY 13441-4505

Prepared by:
Thomas McGibbon

DoD Data & Analysis Center for Software (DACS)
ITT Industries - Systems Division

Griffiss Business & Technology Park
775 Daedalian Drive

Rome, NY 13441-4909

The Data & Analysis Center for Software (DACS) is a Department of Defense (DoD) Information
Analysis Center (IAC), administratively managed by the Defense Technical Information Center (DTIC)
under the DoD IAC Program. The DACS is technically managed by Air Force Research Laboratory
Information Directorate (AFRL/IF) Rome Research Site. ITT Industries - Systems Division manages
and operates the DACS, serving as a source for current, readily available data and information
concerning software engineering and software technology.

DoD Data & Analysis Center for Software (DACS)
P.O. Box 1400

Rome, NY 13442-1400
(315) 334-4905, (315) 334-4964 - Fax

cust-laisn@dacs.dtic.mil
http://www.dacs.dtic.mil

http://www.dacs.dtic.mil/
http://www.dacs.dtic.mil/
mailto:cust-laisn@dacs.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project, (0704-0188). Washington, DC 20503.

 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

 6. AUTHORS

 7. PERFORMING ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

NSN 7540-901-280-5500 Standard Form 298 (Rev 2-89)

20 August 1997 N/A

An Analysis of Two Formal Methods: VDM and Z F30602-89-C-0082

Thomas McGibbon - DACS Director

ITT Industries, Systems Division, 775 Daedalian Drive DACS-CRTA-97-1
Rome, NY 13441-4909

Defense Technical Information Center (DTIC)/ AI
8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060
and Air Force Research Lab/IFTD N/A
525 Brooks Rd., Rome, NY 13440

Available from: DoD Data & Analysis Center for Software (DACS)
775 Daedalian Drive, Rome, NY 13441-4909

Approved for public release, distribution unlimited UL

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

This paper compares and contrasts the strengths and weaknesses of the Vienna Development Method
(VDM) and Z in the software design life cycle phase, and compares and contrasts VDM and Z to other
formal models. Tool support, lessons learned, and technical and achieved business benefits are
emphasized. Based on available data, this paper analyzes the return-on-investment (ROI) from use of
these methods, and this ROI data is compared to ROI data from cleanroom software engineering and other
process improvement methods.

Formal Methods, VDM, Z, Zed, Metrics Software Measurement 21

N/A

An Analysis of Two Formal Methods: VDM & Z

An Analysis of Two Formal Methods:
VDM & Z

Table of Contents

Abstract & Ordering Information____________________________________ 1

1. Introduction___ 2

2. Traditional Uses of Formal Methods _________________________ 2

3. Use of Formal Methods in Design ___________________________ 3

4. Comparison of Method Characteristics _______________________ 5

5. Comparison of Tool Support________________________________ 7

6. Comparison of Field Experience ____________________________ 8

a. Table 3 Conclusions ... 13

7. Detailed Financial Analysis _______________________________ 14

References __ 16

About the Author ___ 17

Appendix

Annotated Bibliography ___ A1

Tables

Table 1: Comparison of VDM and Z Characteristics ... 6

Table 2: Tool Support Comparison .. 8

Table 3: Practical Experience with VDM and Z ... 10-12

Table 4: Financial Comparison of Formal Methods... 14

Figures

Figure 1: Defect Rates for CICS Project .. 13

An Analysis of Two Formal Methods: VDM & Z

 Acknowledgements:

 The author would like to gratefully acknowledge comments on an earlier draft by Mr. Robert Vienneau
and the help of Mr. Lon R. Dean in producing this report.

An Analysis of Two Formal Methods:
VDM & Z

Abstract and Ordering Information

Abstract

This paper compares and contrasts the strengths and weaknesses of the Vienna Development Method
(VDM) and Z in the software design life cycle phase, and compares and contrasts VDM and Z to other
formal models. Tool support, lessons learned, and technical and achieved business benefits are
emphasized. Based on available data, this paper analyzes the return-on-investment (ROI) from use of
these methods, and this ROI data is compared to ROI data from cleanroom software engineering and
other process improvement methods.

Ordering Information:

A bound version of this report, is avaliable for $30 from the DACS Product Orderform at:
http://www.dacs.dtic.mil/forms/orderform.shtml or you may order it by contacting:

DACS Customer Liaison
775 Dadaelian Drive
Griffiss Business Park
Rome, NY 13441-4909

(315) 334-4905; Fax: (315) 334-4964;

(800) 214-7921- Toll Free;

cust-liasn@dacs.dtic.mil

1

http://www.dacs.dtic.mil/forms/orderform.shtml
mailto:cust-laisn@dacs.dtic.mil

An Analysis of Two Formal Methods: VDM & Z 2

Introduction

The purpose of this paper is to compare and contrast two of the most frequently used formal methods in
design: the Vienna Development Method (VDM) and Z. Hayes [14] has provided a fairly thorough
comparison of the appearances, data types, states, initialization, operations, syntax, preconditions, and
exception handling of the two methods. These comparisons are summarized. Tool support for each
method is compared and contrasted, and the results of applying these two methods in practice is
presented. Formal methods are generally believed to reduce development costs and reduce defects in
operational software. Practical experience with these methods is examined to see if the facts support this
hypothesis.

Formal methods, in the sense of software development, are mathematically based techniques used to
precisely describe a system. They can be applied throughout the development of a system and involve the
use of refinement techniques and proofs of correctness at each stage to insure that the current specification
completely and correctly refines the previous specification. Formal methods can also be used to ensure
unsafe or insecure states cannot arise in any system satisfying a formal specification.

Formal methods grew out of program proving techniques, early examples of which are Edsger Dijkstra’s
predicate transformers and Harlan Mills’ function approach. The syntax of predicates and function
specifications drew on a mixture of mathematical logic and set theory, but this mathematical background
was initially not fully formalized. Gradually formal methods have come to emphasize formal
specifications. The development of formal methods has been accompanied by the development of logic
customized for system development. For example, temporal logic includes operators to indicate that a
proposition is always true, is true until some other proposition becomes true, or will be eventually true, in
addition to the usual operators in the propositional calculus of negation, disjunction, conjunction,
implication, and equivalence. Larch, Communicating Sequential Processes (CSP), Petri nets, and State
Charts are all examples of formal methods.

VDM and Z seem to be the two most popular and most frequently used formal methods for specifications.
They are the most frequently referenced methods in the literature, have the most world wide web pages
addressing their use, and are among the few methods for which ISO standards exist. The focus of this
paper is on comparing and contrasting these two methods.

How, where and why formal methods have been applied is examined in the remainder of this paper. VDM
and Z are compared and contrasted based on their syntax and semantics and based on real field use of the
two methods. The last section examines the return on investment associated with the use of these
methods. Comparisons are shown in tabular fashion with necessary supporting text.

Traditional Uses of Formal Methods

Formal methods are traditionally used when a system has correctness as a concern, such as in safety-
critical and security-critical systems, systems in which the cost of system failure is catastrophic, and
systems where standards organizations mandate their use ([8], [9], [11], [12], [15], [26]). As stated by
Gerhart, Craigen and Ralsten [8], formal methods are primarily used for:

• Quality assurance for systems that require a high degree of confidence, auditable information,
and targets of low of zero error rates

• Developing a better understanding of an application domain and communicating that
understanding

An Analysis of Two Formal Methods: VDM & Z 3

• Providing evidence of best practice

• Systems that require structure recovery or functional enhancement.

Formal methods are most frequently used to capture and define system and functional requirements.
Formal methods have been used for safety and security-critical purposes in:

• Certifying the Darlington Nuclear Generating Station plant shutdown system [9]

• Designing the software to reduce train separation in the Paris Metro [9]

• Developing a collision avoidance system for United States airspace [9]

• Achieving clearance to carry sensitive information through an internet gateway [9]

• Assuring safety in the development of programmable logic controllers [11]

• Developing a water level monitoring system [27]

• Developing an air traffic control system [12].

Formal methods have been used as an aid in the specification of an oscilloscope [3], in the development
of IBM’s Customer Information Control System transaction processing system [16], and in development
of IBM’s Cobol Structuring Facility [20]. Formal methods have also been used for design verification
[17] of a RISC processor [25] and in standards development [1].

Experience with formal methods in the United States includes Cleanroom Software Engineering; research
at the Naval Research Laboratory, such as the Software Cost Reduction project; various NASA projects;
and academic research. Most of the formal methods experience documented in the open literature,
however, has largely taken place in European countries, especially the United Kingdom. For that matter,
there are no technical journals within the United States devoted to Formal Methods. The main English-
language journals are in the United Kingdom.

Use of Formal Methods in Design

Decomposition and refinement are two important elements of the design of software systems.
Decomposition involves the process of dividing a system into smaller elements or modules. Refinement
involves specification at different levels of abstraction, and showing that a specification at a lower level
satisfies a requirement at a higher level.

Formal methods, such as Z and VDM, are often used primarily for requirements specification, not design.
Traditional formal specification languages, such as Z, VDM, Larch, and Lamport’s transition axiom
method are methods, however, that are well suited to the software design process [27]. Traditional formal
specification languages can be, and have been, used to specificy module interfaces. Implementers of
modules can implement a module without knowledge of the specifics of called modules. In addition,
implementers of a called module can implement its specification without knowledge of the calling
module, as long as the interface remains the same. Traditional formal methods are used to prove
satisfaction of requirements arising in the refinement of a design. Formal methods are also used for
procedural specifications of system functionality

However formal methods cannot be used for all aspects of system design (e.g. user interface design) and
most projects that employ formal methods utilize a combination of traditional and formal methods to
complete the design. Luqi and Goguen [21] state that formal methods do not yet handle large and
complex system development. Practitioners of formal methods consider formal methods appropriate for

An Analysis of Two Formal Methods: VDM & Z 4

proving that programs satisfy certain mathematical properties of a system. The gaps between formal
specifications and code are still great. Luqi and Goguen conclude that formal methods should play a part
in reliability. A British Air Traffic Control system named the Central Control Function (CCF) Display
Information System (CDIS), a security-critical system, and a development of Programmable Logic Chips
(PLCs) illustrate the impacts of formal methods on design.

As described in Hall [12], Fenton and Pfleeger [4], and Pfleeger and Hatton [23], the design of the CDIS,
a system with safety-critical requirements, incorporated the use of traditional and formal methods. They
concluded that formal design yielded highly reliable code. The design of this system was expressed in
four parts with a design overview document to connect the parts:

• The application code was designed using VDM specifications, created as refinements of the
core requirements specification.

• The design specification of this system’s local area network used a mixture of VDM and the
Calculus of Communicating Systems (CCS).

• Concurrency requirements were derived by using Finite State Machines.

• The user interface was described in pseudo-code.

Larsen, Fitzgerald, and Brookes [19] assessed the impact of introducing a modest amount of formal
specification into an existing development process for a security-critical system. The study involved the
parallel development by two separate engineering teams of a system component called the trusted
component. One team developed it utilizing traditional methods. The other team augmented their
traditional methods with formal specifications wherever they felt it appropriate. They used VDM during
the design phase to specify type definitions and procedural functionality. Larsen observed during design
reviews that formal software design was specified at a higher level of abstraction than would normally be
expected. This means that more design decisions would have to be made by the implementor - relying on
the programmer to make design decisions is a controversial issue.

Halang and Kramer [11] utilized formal methods for the design of programmable logic chips (PLCs).
PLCs are replacing hard-wired switching networks in a range of applications. They used Obj and high-
level Petri-net models to specify requirements and designs of the system. Formal requirements were
converted to function or black boxes (blocks) in the design, and the blocks were interconnected to form a
complex program. Petri net models of the function block diagrams, which include algebraic interface
specifications, were used to determine the static and dynamic properties of both distributed and
concurrent programs. The designs were verified against the critical requirements using proof techniques
utilizing the Obj3 system. They observed that formal requirements and design specifications make it
possible to reuse function blocks and the proofs to verify them. Formal specifications and designs were
shown to demonstrate the consistency between the specifications and the code for all possible data inputs.
They also observed that certification authorities can use formal verification techniques to show a
program’s dependability and to prove the correctness of the entire program with respect to its
requirements and design specifications

An Analysis of Two Formal Methods: VDM & Z 5

Comparison of Method Characteristics

Formal methods can be compared on any number of charactistics. Table 1 provides a comparison of Z
and VDM based on the most important characteristics of the specification languages ([6], [14], [27], [28]):

• All formal methods are based in mathematics. Some methods are based on set theory and first
order predicate calculus. Others are based on temporal logic, which is an extension of
propositional logic to fomalize how the truth values of some propositions alter with the time at
which they are evaluated. Both VDM and Z are based on set theory and first order predicate
calculus.

• Formal methods utilize either a property-oriented or model-oriented approach and have
different levels of rigor. Model-oriented formal methods specify system behavior by the
construction of a mathematical model with an underlying state (data) and a collection of
operations on that state. Property-oriented formal methods define system behavior indirectly
by stating a set of properties, usually in the form of axioms, that the system must satisfy.
VDM and Z are both of the model-oriented type.

• Both VDM and Z are only used to specify the functional aspects of systems. Neither support
all aspects of design.

• VDM and Z differ in their appearance on the page as well. VDM specifications are heavily
loaded with keywords (e.g. ext, rd, wr, dom, post). The boxes and schemas of Z distinguish
its appearance from VDM’s.

• Z provides a schema calculus for combining specifications, for example, to handle error
handling or status information. VDM provides no similar mechanism.

• The syntax of Z and VDM are different in defining before and after states of variables.

• Inputs and outputs are also distinguished differently in the syntax of Z and VDM.

• VDM and Z have different methods for describing whether variables can be changed or are
read-only.

• VDM explicitly handles exception handling. Z does not.

In summary, although different in syntax and structure, Z and VDM do not differ radically from one
another. They are similar in their foundations and goals, and both allow the specifier to state requirements
precisely and refine these specifications into designs correctly

An Analysis of Two Formal Methods: VDM & Z 6

Table 1: Comparison of VDM and Z Characteristics

Characteristic VDM Z

Mathematical Basis • Set Theory • Set Theory
• First Order Predicate • First Order Predicate

Calculus Calculus

Model or Property Oriented Model-Oriented Model-Oriented

Specified Properties Behavior (functionality) and Behavior (functionality) and
design of sequential programs design of sequential programs

Design Aspects Not Supported • System Timing • System Timing
• Concurrency • Concurrency
• User Interface • User Interface

Page Appearance Differences Heavily Keyword oriented Boxes or Schemas
(e.g. pre-, post-, invariants)

Structuring Mechanisms None Schema Calculus which allows
various schemas to be
combined to form new schemas

Specification of State Changes • Before: hooked variables • Before: undecorated variables
• After: unhooked variables • After: primed variables

Identification of Inputs No explicit way of specifying • Inputs: variable names
and Outputs ending in “?”

• Outputs: variable names
ending in “!”

Distinguishing Constants Keyword wr for variables D for variables that can change.
and Variables that can change.

Keyword rd for variables X for variables that are read
that are read only only.

Exception Handling Support Has notation to mark and Not explicitly supported in
define error conditions notation. Defined by

specifying
an operation using
structuring mechanisms.

An Analysis of Two Formal Methods: VDM & Z 7

Comparison of Tool Support

Tool support provided for VDM and Z are shown in Table 2. Using formal methods and specification
languages in practice requires that any candidate method have tool support in one or more of the
following categories:

• Editing Facilities. Tools in this class are used to input and edit formal specifications.

• Document Printing. If computers are used to capture formal specifications, methods need to be
provided to print the specifications in a “pretty” format. LATEX, troff, and postscript appear to
be the most popular formats supported.

• Visual Specification. Some tools are available that allow specifiers to specify requirements
using pictures or graphics. These tools then automatically produce and maintain the specifica-
tions in a target formal specification language.

• Syntax Checking. Syntax checking tools check specifications for grammatical correctness. Most
syntax checkers allow specifications to be imported from source files in ASCII or mathematical
syntax.

• Semantic Analysis. Semantic analyzers carry out checks on the well-formedness of the specifi-
cations, including checking declaration scope, use of state variables, use of hooked and bang
values, and use of record types.

• Proof Support. Proof checkers and theorem provers assist users in deriving and managing
formal proofs.

• Code Generation. Tools are beginning to appear which generate computer language source
code representations of the specifications.

The fact that similar tool support exists for both Z and VDM may indicate that both methods are
equally popular in the formal methods community.

An Analysis of Two Formal Methods: VDM & Z 8

Table 2: Tool Support Comparison

Class of Tool VDM Tools Available Z Tools Available

Editing Facilities • VDM through Pictures • IBM - Z Tool
(VtP) by IDE • Computer Aided Design

in Z (CADiZ)

Document Printing • SpecBox (supports LAT
E
X • Computer Aided Design

Output) in Z (CADiZ) - supports
troff output in UNIX

Visual Specification • VDM through Picture (VtP) • None Found
by IDE

Syntax Checking • SpecBox • Computer Aided Design
• Delft VDM SL in Z (CADiZ)

• ZTC, a free tool for PC
and UNIX

• Fuzz, a commercial product
for DOS and UNIX

Semantic Analysis • SpecBox • Computer Aided Design
• Delft VDM SL in Z (CADiZ)

Proof Support • mural - validate a formal • Zola from Imperial
spec against an informal Software Technology, Inc.
description proof assistant

Code Generation • VDM Domain Compiler • None Found.

Comparison from Field Experience

The formal methods community faces a challenge to demonstrate and document positive benefits and
positive return on investment from the application of formal methods. This challenge must be met for
formal methods to receive acceptance and use as sound engineering methods within the United States. No
single formal method has been applied throughout a total system development to date.

Two systems, however, that were specified and designed using Z and VDM have quantitative results
documented in the technical literature:

• The Customer Information Control System (CICS), a transaction processing system developed
using Z by IBM in the United Kingdom.

• The Central Control Function (CCF) Display Information System (CDIS), developed by Praxis
using VDM.

Table 3 compares these two projects and their reported results. These two systems are quite different
applications. One is a general purpose On-Line Transaction Processing (OLTP) system, and the other is a
custom, real-time system with severe constraints.

An Analysis of Two Formal Methods: VDM & Z 9

The principal goal of this comparison is to identify and compare lessons-learned from applying each
method and to examine the impact of each method on rework and development costs. Significant cost
savings in a development project can be achieved through an increase in productivity, a reduction in the
number of defects induced into a system, or the detection and resolution of defects closer to the point of
insertion of the defects. Finding and resolving a defect after the product is released increases the repair
from 100 to 250 times the cost of finding and resolving a defect during the design or coding phase [22].

Certainly no firm conclusions can be drawn from just one application of each method. However, some
interesting comparisons between the methods can be seen by examining Table 3 and by comparing this
data with industry standards and experience with Cleanroom developments:

• The size of the formal design specification in pages per Thousand Source Lines Of Code
(KSLOC) was approximately 2.75 times greater in the Z specification than in the VDM
specification. This difference could have been caused by a number of factors, such as, the
differences in programming languages used with each method (C vs. PLAS) and the
experience of the VDM team and their customer with the formal method used.

• The defect rate of 11 defects/KSLOC as reported by the VDM team compares unfavorably to
an industry average of 7 defects/KSLOC [22]. I found this statistic quite surprising and would
have expected this statistic to have been closer to reports from Cleanroom experience [22],
where defect rates less than 1 defect/KSLOC have been reported. The approximate 40%
reduction in defect rates as reported from the Z application compares more favorably to
experiences of Cleanroom. Cleanroom reports, however, greater than 85% reduction in defects
as compared to traditional methods.

• The productivity of the VDM team (13 SLOC/Day) represents an 85% improvement over industry
standards of 7 SLOC/Day [22]. By comparison, the 9% improvement as reported by the Z
project represents a fairly modest increase in productivity as compared to industry standards.

• The 0.75 defects/KSLOC found after product release from the VDM project is an improvement
over the industry average of approximately 1.0 defects/KSLOC [22]. Although the Z project
stated no explicit defect rate, if IBM was experiencing industry average defect rates after product
release prior to using formal methods, a 2.5 times improvement would result in approximately
0.30 defects/KSLOC after product release. These numbers compare unfavorably to a post-release
defect rate of less than 0.05 defects/KSLOC [22] from Cleanroom experience.

• Both projects showed similar positive findings in terms of the severity of reported problems from
field use. This shows that few, if any, design problems existed in the system at the point of
release of the products. These findings are similar to observations from Cleanroom developments.

• The observed deficiencies from the CDIS project shows that VDM cannot be used to explicitly
state all requirements of a system. Although no deficiencies were identified in the CICS project
for Z developed projects, the author of the CDIS paper had considered utilizing Z for the CDIS
project, but eliminated it from consideration because Z’s error-handling conventions were clumsy.

• The conclusions stated about formal methods from both projects were of special interest. The
CDIS system was a project developed with a specific customer involved in the whole process;
whereas the CICS project was developed for a large class of users. The conclusions for the CDIS
project came from the customers viewpoint. Conclusions for the CICS project came from the
development project and management team. The advantages stated for CDIS were expected and
confirm the objectives of formal methods: precise and comprehensive system specifications.

An Analysis of Two Formal Methods: VDM & Z 10

Table 3: Practical Experience with Z and VDM in Specification and Design

Comparison Factor VDM Application Z Application

Project Name Central Control Function Customer Information
(CCF) Display Information Control System (CICS)
System (CDIS)

Information Source Hall [12] Houston and King [16]

Application Type Air Traffic Control Information On-Line Transaction
System (Real Time System). Processing System. Generic
CDIS displays information facilities can be tailored to
about incoming and outgoing business requirements by an
flights, weather conditions, Application Programming
and equipment status at Interface (API) used to invoke
airports. CICS services.

Additional Constraints • Performance: information None reported
must be displayed in 1-2
seconds of receipt.

• Availability: 99.97%
• No Single Point of Failure

Company Using Praxis IBM
Formal Method

Location of Use United Kingdom United Kingdom

Customer Base London Area and Terminal General Business Community
or System Control Centre for flights

at Heathrow and Gatwick
airports

Date of General Autumn, 1993 June, 1990
Release of

Completed System

Development Type New Development Enhancement to Existing,
22 year old, System.

Rationale for Use Safety, Life Critical System. • Clarify internal interfaces
of Formal Methods • Provide basis for future

Rationale for Choice VDM was familiar to Unknown. Author says Z
of Method requirements team and had was selected after

been used on other projects “much research”.
for customer.

An Analysis of Two Formal Methods: VDM & Z 11

Table 3: Practical Experience with Z and VDM in Specification and Design (continued)

Comparison Factor VDM Application Z Application

Language Used for • VDM for operational Z
Functional Specifications and data specifications

• Entity Relationship
Diagrams for World Model

• Data Flow Diagrams for
Processing Requirements

Language Used for • Functional Design: VVSL Z
System Specifications • Process Design: Finite-State

Machines to diagram and
VVSL to characterize
complex states.

• User Interface: IBM
Presentation Manager

• LAN Design: Calculus of
Communicating Systems

Language Used for • Functional Design: VVSL Z
Designs • Process Design: Finite-State

Machines to diagram and
VVSL to characterize
complex states.

• User Interface: IBM
Presentation Manager

• LAN Design: Calculus of
Communicating Systems

Were Proofs Used? Yes, on LAN Design because No
it was such a critical element.

Language Used for C PLAS
Source Code

Total KSLOC from 197 KSLOC ~48 KSLOC
 Formal Methods

Percent of New and 100% 18% (48 KSLOC/268 KSLOC)
Modified Source Code

Resulting from
Formal Methods Design

Length of Formal 3,000 pages = 15 pages/KSLOC 2,000 pages = 42 pages/KSLOC
Design Specifications

An Analysis of Two Formal Methods: VDM & Z 12

Table 3: Practical Experience with Z and VDM in Specification and Design (continued)

Comparison Factor VDM Application Z Application

Defect Rates with 11 Defects/KSLOC at System Estimated 40% Reduction1

Formal Methods & Integration Test

Productivity 13 SLOC/Person-Day 9% improvement
(attributed to less rework
during development)

Defects Reported by 0.75 Defects/KSLOC 2.5 times reduction after
Customers on Formally 8 months of operation

Developed Code

Severity of Customer- Few faults were specification Much less than for other
Reported Problems or requirements based, and projects

they were less costly to repair.

Requirements:
Observed Deficiencies of • Cannot distinguish between None reported
Selected Formal Method essential and merely desirable

functions
• Cannot specify global

properties
• Cannot specify usability,

performance, reliability and
safety requirements.

System Spec
• Cannot specify user interface.
• No concurrency specification

Conclusions Advantages:
• Specification was • It is possible to introduce Z

comprehensive into development process
• Specification was precise without formal refinement.
• System tests derived from • Overall quality of the product

specs, so customer could see improved,as measured
level of testedness. by defects/KSLOC.

Disadvantages: • Faults were found earlier
• Difficult to get overview in the development cycle.

from formal methods.
• Difficult to interpret spec

1 The defect rate improvement was not explicitly stated in the text of the source document. It was
computed based on the graph shown in Figure 1, which also appeared (without the grid) in the text of the
source document. No specific values were given for the Y-axis. However a linear grid was overlaid on
this graph, values were interpolated from the graph, and a total percent improvement was calculated.

An Analysis of Two Formal Methods: VDM & Z 13

Key:
PLD: Product Level Design

CLD: Component Level
Design

MLD: Module Level Design

UT: Unit Test

PV:Functional Verification

Systest:System Test

CA: Customer Availability

Table 3 Conclusions

The conclusions I draw from Table 3 (with only one data point per formal method) is that VDM
specifications may be easier and more productive to use (based on productivity figures), but the higher
than industry average in defects that are introduced using the VDM method compares very unfavorably to
Z defect rates. The high cost of rework [22] observed in the US software industry could, overall, make
VDM more costly to use than Z.

Detailed Financial Analysis

A previous DACS report [22] presented a detailed cost model. This model was used to analyze
development costs and cost savings from reduced rework resulting from software process improvements,
such as an increased SEI Capability Maturity Model (CMM) ranking, software inspections, software
reuse, and Cleanroom Software Engineering. The model was implemented as a Microsoft Excel
spreadsheet.

That speadsheet model has been extended based on the data from Table 3 (which contains only one data
point for each formal method). This model can be used to compare and contrast Z and VDM with each
other, as well as with traditional software development. Results are shown in Table 4. The first column
labels the parameters and some outputs of the model. The remaining three columns represent the three
method to be compared and contrasted: VDM, Z, and traditional software development. Each row in
Table 4 is discussed following the table.

Figure 1: Defect Rates for CICS Project

An Analysis of Two Formal Methods: VDM & Z 14

Table 4: Financial Comparison of Formal Methods

Formal Methods Formal Methods Traditional
VDM Z Methods

Estimated SLOC 32,000 SLOC 32,000 SLOC 32,000 SLOC
Productivity Improvement 86% 9% 0%
Estimated Effort 211.9 Person Months 361.6 Person Months 368.0 Person Months
Equivalent Cost $1,255,508 $2,142,480 $2,180,400
Average Defects/KSLOC 11 4.2 7
Expected Number of Defects 352 134.4 224

% Defects Introduced by Phase
Design 35 % 35 % 35 %
Coding 65 % 65 % 65 %

% Defects Detected by Phase
Design 47 % 48 % 40 %
Coding 41 % 42 % 35 %
Test 86 % 87 % 73 %

Defects Left for Customer 24.29 8.43 33.81
Post Release Defects/KSLOC 0.76 0.26 1.06
Maintenance Costs $242,923 $84,313 $338,083

Total Rework Costs $338,814 $177,771 $417,719
Reduction from Traditional 18.89 % 57.44 % N.A.
Methods

Total Life Cycle Costs $1,498,431 $2,226,793 $2,518,483
Reduction from Traditional 40.50 % 11.58 % N.A.
Methods

Schedule Length 19.10 Months 23.00 Months 23.18 Months
Reduction from Traditional 17.60 % 0.78 % N.A.
Methods

• The spreadsheet was designed to allow anyone to start from a problem of their own choosing.
It thus begins with an estimate of the size of the program (in SLOC) to be estimated for the
various methods. The Intermediate COCOMO 1.1 model was used to estimate costs and
schedules. SLOC is the main cost driver in intermediate COCOMO 1.1. The example shown in
Table 4 is a medium-sized semidetached system with very high reliability requirements,
product complexity, and execution time constraints. These seem to be typical characteristics of
systems to which formal methods are applied [15].

An Analysis of Two Formal Methods: VDM & Z 15

• The COCOMO estimates were adjusted to reflect the observed productivity gains from formal
methods. As shown in Table 3, the Z project had a 9% improvement, and the VDM project
produced 13 SLOC per person day. If one accepts that the industry average productivity is 7
SLOC per person day, VDM represents almost a doubling of productivity when compared to
traditional methods.

• Estimated effort is a COCOMO output. Effort and schedule estimates include a planning and
requirements phase. Both VDM and Z compare favorably to traditional software development
methods, with VDM being much better than tradional methods.

• Equivalent cost is estimated based on the assumption of a cost of $5,925 per person month.
Comparisons based on equivalent cost are unchanged from comparisons based on effort.

• The average number of defects per KSLOC is an observed parameter. Traditional
developments typically observe 7 defects per KSLOC [22]. As shown in Table 3, 11 defects
per KSLOC were observed during the VDM project, and a 40% reduction was observed during
the Z project. If this 40% reduction were from the “industry average,” the Z project would
have experienced 4.2 defects per KSLOC. The VDM values compare unfavorably to the other
methods. The Z method experiences the best of the three.

• The defects expected is merely the product of the average number of defects per KSLOC and
the size in KSLOC. This is the number of defects introduced throughout the life cycle.

• Rework is reduced by introducing less defects and by detecting and removing defects as close
to the point of defect insertion as possible. However, the pattern of defect insertion and
removal by life cycle phase has not been reported for VDM and Z. Thus, the percent defects
introduced by phase and percent defects detected by phase are taken from data on traditional
methods. The percent defects detected by phase were uniformly increased for VDM and Z to
obtain a total percentage of defects removed that matches reported data within rounding errors.

• Applying the defect introduction and removal percentage to the expected number of defects,
one obtains the defects left for the customer. The VDM project observed 0.75 defects per
KSLOC in defect reports by customers. The Z project observed a 2.5 times reduction (where
the industry average is approximately 1 defect per KSLOC). The Z post release defect rate is
better than the VDM project. Both VDM and Z are better than traditional methods.

• Total rework costs are computed and compared to traditional methods. It is assumed that
rework hours consist of 2.5 hours per defect during design and coding, 25 hours per defect
during test, and 250 hours per defect during maintenance. Rework costs are assumed to be $39
per hour. As can be seen in Table 4, VDM rework costs are reduced only somewhat from
traditional methods, while Z compares very favorably to traditional methods.

• The next block compares the total costs (development costs and rework from maintenance)
associated with software development. The “bottom line” shows that VDM is less costly than
Z, but both VDM and Z cost less than traditional methods.

• The final block compares estimated schedule length from Cocomo. Z has a schedule length
similar to traditional methods. VDM has a shorter schedule than Z.

An Analysis of Two Formal Methods: VDM & Z 16

References

1. D. Blyth, C. Boldyreff, C. Ruggles, and N. Tetteh-Lartey, “The Case for Formal Methods in
Standards,” IEEE Software, pp. 65-67.

2. J. P. Bowen and M.G. Hinchey, “Seven More Myths of Formal Methods,” IEEE Software, July 1995,
pp. 34-41.

3. N. Delisle and D. Gartan, “A Formal Specification of an Oscilloscope,” IEEE Software, September
1990, pp. 29-36.

4. N. Fenton and S. L. Pfleeger, “Can Formal Methods Deliver?”, Computer, February 1997, pp. 34.

5. C. Fidge, P.Kearney, and M. Utting, “A Formal Method for Building Concurrent Real-Time
Software,” IEEE Software, March/April 1997, pp. 99-106.

6. B. Fields, “A Guide to Reading VDM Specifications,” Technical Report UMCS-92-12-4, Department
of Computer Science: University of Manchester , http://www.cs.man.uk/, 1992.

7. S. L. Gerhart, “Applications of Formal Methods: Developing Virtuoso Software,” IEEE Software,
September 1990, pp. 6-10.

8. S. L. Gerhart, D. Craigen, and T. Ralston, “Experience with Formal Methods in Critical Systems,”
IEEE Software, January 1994, pp. 21-28.

9. S. L. Gerhart, D. Craigen, and T. Ralston, “Regulatory Case Studies,” IEEE Software, January 1994,
pp. 30-39.

10. W.W. Gibbs, “Software’s Chronic Chrisis,” Scientific American, September 1994, pp. 86-95.

11. W. A. Halang and B. J. Kramer, “Safety Assurance in Process Control,” IEEE Software, January
1994, pp. 61-67.

12. A. Hall, “Using Formal Methods to Develop an ATC Information System,” IEEE Software, March
1996, pp. 66-76.

13. J. A. Hall, “Seven Myths of Formal Methods,” IEEE Software, September 1990, pp. 11-19.

14. I. J. Hayes, C. B. Jones and J. E. Nicholls, “Understanding the Differences between VDM and Z,”
Technical Report UMCS-93-8-1, Department of Computer Science: University of Manchester, http://
www.cs.man.uk/, 11 August 1993.

15. M. G. Hinchey and J. P. Bowen (editors), Applications of Formal Methods, Prentice Hall, 1995.

16. I. Houston and S. King, “CICS Project Report: Experiences and Results from the use of Z”,
Proceedings of VDM ‘91, Volume 551, Springer Verlag, Berlin, 1991, pp. 588-596.

17. R. A. Kemmerer, “Integrating Formal Methods into the Development Process,” IEEE Software,
September 1990, pp. 37-50.

18. J. Knight and B. Littlewood, “Critical Task of Writing Dependable Software,” IEEE Software, January
1994, pp. 16-20.

19. P. G. Larsen, J. Fitzgerald, and T. Brookes, “Applying Formal Specification in Industry,” IEEE
Software, May 1996, pp. 48-56.

An Analysis of Two Formal Methods: VDM & Z 17

20. R. Linger and H. Mills, “A Case Study in Cleanroom Software Engineering: The IBM COBOL
Structuring Facility,” Proc. Compsac, IEEE CS Press, Los Alamitos, Calif.,1988, pp. 10-17.

21. Luqi and J. A. Goguen, “Formal Methods: Promises and Problems,” IEEE Software, January/February
1997, pp.73-85.

22. T. L. McGibbon, “A Business Case for Software Process Improvement,” DACS State of the Art
Report, September, 1996.

23. S. L. Pfleeger and L. Hatton, “Investigating the Influence of Formal Methods,” Computer, February
1997, pp. 33-43.

24. J. M. Spivey, “Specifying a Real-Time Kernel,” IEEE Software, September 1990, pp. 21-28.

25. M. Srivas and M. Bickford, “Formal Verification of a Pipelined Microprocessor”, IEEE Software,
September 1990, pp. 52-64.

26. L. G. Williams, “Assessment of Safety-Critical Systems,” IEEE Software, January 1994, pp. 51-60.

27. J. M. Wing, “A Specifier’s Introduction to Formal Methods,” Computer, September 1990, pp. 8-24.

28. J.C.P. Woodcock, “Structuring Specifications in Z”, Software Engineering Journal, January 1989,
pp.51-66.

About the Author

Tom McGibbon is director of the Data and Analysis Center for Software (DACS), the DoD’s Software
Information Clearinghouse. I ask that all readers of this paper visit the DACS outstanding web site at
http://www.dacs.dtic.mil/.

Tom is a 1973 graduate of Clarkson University, with a BS Degree in Mathematics and Computer Science.
He is an overworked Masters graduate student in the Software Engineering program at Southern
Methodist University.

Contact Information:

Thomas McGibbon
DoD Data & Analysis Center for Software (DACS)
ITT Industries - Systems Division
775 Daedalian Drive
Rome, NY 13441-4909

(315) 334-4905, (315) 334-4964 - Fax
tmcgibbo@dacs.dtic.mil

http://www.dacs.dtic.mil/
mailto:tmcgibbo@dacs.dtic.mil

An Analysis of Two Formal Methods: VDM & Z

Annotated Bibliography

J. P. Bowen and M.G. Hinchey, “Seven More Myths of Formal Methods,” IEEE Software, July 1995,
pp. 34-41.

This paper expands on J.A. Halls seven myths of FMs and examines seven more myths:
• Formal Methods Delay the Development Process.
• Formal Methods lack Tools.
• Formal Methods Replace Traditional Engineering Design Methods.
• Formal Methods only Apply to Software.
• Formal Methods are Unnecessary.
• Formal Methods are not Supported.
• Formal Methods People Always Use Formal Methods.

N. Fenton and S. L. Pfleeger, “Can Formal Methods Deliver?”, Computer, February 1997, pp. 34.

This brief article examines the inhibitors of the application of formal methods and document cases in
which formal methods were used throughout the development cycle. This article contradicts other
claims that formal methods reduce number of defects.

B. Fields, “A Guide to Reading VDM Specifications,” Technical Report UMCS-92-12-4, Department of
Computer Science: University of Manchester , http://www.cs.man.uk/ , 1992.

This paper provides a summary of the syntax of the Specification Language for the Vienna Development
Method (VDM). All other VDM references that were found were too voluminous to be useful for this
paper. It is not a tutorial or a formal description of VDM. It briefly examines expressions, data types,
how definitions are made, and short examples of the use of VDM.

C. Fidge, P.Kearney, and M. Utting, “A Formal Method for Building Concurrent Real-Time Software,”
IEEE Software, March/April 1997, pp. 99-106.

This article discusses the use of Z in developing real-time requirements and the application of Z to
concurrency issues.

S. L. Gerhart, D. Craigen, and T. Ralston, “Experience with Formal Methods in Critical Systems,” IEEE
Software, January 1994, pp. 21-28.

This article provides an analysis of the practical application of formal methods in five commercial and
four regulatory applications. Regulatory cases exhibit safety or security critical attributes. The authors
claim that there has been no widespread or repeat penetration of formal method use.

W.W. Gibbs, “Software’s Chronic Chrisis,” Scientific American, September 1994, pp. 86-95.

This paper exposes a larger scientific community (the audience of a Scientific American journal article)
than the software community to the inherent problems in the software industry and the benefits resulting
from use of formal methods. The author examines the critical problems facing the software industry.
Formal methods are suggested as one approach to overcoming these problems.

A1

An Analysis of Two Formal Methods: VDM & Z

W. A. Halang and B. J. Kramer, “Safety Assurance in Process Control,” IEEE Software, January 1994, pp.
61-67.

The authors examined the use of formal methods in Programmable Logic Controllers. Programmable
Logic Controllers (PLCs) are replacing hard wired switching networks. PLCs can process more
information faster than the switching networks. In PLCs, exhaustive testing is impossible and errors
cannot be detected solely by peer reviews. They used Obj and Obj3 to automate part of specification
testing and formal verification. Obj is an algebraic language that lets one specify requirements and
designs independently of any data representations and implementation.

A. Hall, “Using Formal Methods to Develop an ATC Information System,” IEEE Software, March 1996, pp.
66-76.

This was the best article found on the application of formal methods. Formal methods were used in the
specification, design and verification of the Central Control Function (CCF) Display Information System
(CDIS). Because of size and complexity of the CDIS, the developers used several formal methods to
develop the sequential and concurrent aspects of the CDIS. The author describes the use of formal
methods in each phase of development. VDM, and its variants, were the primary formal specification
language used. Productivity and error rate data is shown.

I. J. Hayes, C. B. Jones and J. E. Nicholls, “Understanding the Differences between VDM and Z,” Technical
Report UMCS-93-8-1, Department of Computer Science: University of Manchester , http://
www.cs.man.uk/ , 11 August 1993.

This paper examines interesting differences and similarities between Z and VDM. Ideas are presented
in the form of a imaginary dialog between several people. This paper compares appearance on the
page, data types, states, initialization, operations, syntax, preconditions, and exception handling.

I. Houston and S. King, “CICS Project Report: Experiences and Results from the use of Z”, Proceedings of
VDM ‘91, Volume 551, Springer Verlag, Berlin, 1991, pp. 588-596.

This paper provides the details of actual experience with Z. Customer Information Control System
(CICS) is a transaction processing system developed by IBM in the UK. CICS consists of 800,000
Lines of Code (LOC), of which 50,000 LOC were new or modified code. Thirty seven thousand new
or modified LOCwere completely specified using Z, and 11,000 LOC were partially specified using Z.
The authors claim that Z reduced development costs and error rates.

J. Knight and B. Littlewood, “Critical Task of Writing Dependable Software,” IEEE Software, January 1994,
pp. 16-20.

This is a good introductory article showing why and how formal methods are applied to safety critical
software. In safety critical systems, the consequences of failure are extremely high, usually a threat to
human life. Safety-critical systems are expected to never fail. When a computer system can cause a
catastrophic failure, developers and regulators will apply very high dependability criteria to both the
hardware and the software. Formal methods have been the method of choice for these needs.

A2

An Analysis of Two Formal Methods: VDM & Z

P. G. Larsen, J. Fitzgerald, T. Brookes, “Applying Formal Specification in Industry,” IEEE Software, May
1996, pp. 48-56.

In this paper, the authors describe the introduction of formal methods into the specification and modeling
activities of the development of a security-critical system. They examine formal methods’ effectiveness
by comparing the results of two groups: one that applied formal methods and one that did not. Interesting
comparisons of formal methods to traditional methods are made.

Luqi and J. A. Goguen, “Formal Methods: Promises and Problems,” IEEE Software, January/February 1997,
pp.73-85.

The authors examine the state of formal methods, and their ability to support small, medium and large
projects. The evolutionary nature of software is considered. The authors distinguish between small,
large, and huge grain methods. Classic formal methods fall into the small grain category. They have
a mathematical basis at the level of individual statements and small programs, but rapidly hit a complexity
barrier when programs get large, because they do not provide structuring or encapsulation. Nine
specific problems with formal methods are discussed.

S. L. Pfleeger and L. Hatton, “Investigating the Influence of Formal Methods,” Computer, February 1997,
pp. 33-43.

The authors attempted to carefully gather and analyze data and results from a product developed with
formal methods. Results obtained were inconclusive, but the authors discovered how to gather data
better. They conclude that using formal specifications can lead to code that is relatively simple and
easy to test. They believe that if you couple formal methods with thorough testing, you can produce
highly reliable code.

L. G. Williams, “Assessment of Safety-Critical Systems,” IEEE Software, January 1994, pp. 51-60.

In this article, the author compares application of the Software Cost Reduction (SCR) and VDM formal
methods. His comparison illuminates features that could aid the Verification and Valiation (V&V) of
specifications for safety-critical systems. The author believes that V&V of specifications against
functional and safety requirements remains one of the most difficult and challenging aspects of critical-
system development.

J. M. Wing, “Formal Methods,” Software Engineering Encyclopedia, J. Marciniak - Editor, 1994.

This paper provides a good discussion of various ways of classifying Formal Methods (FMs). It
provides a comprehensive introduction to the topics and issues that surround FMs. This paper examines
formal specification languages in terms of syntactic domains, semantic domains, and a satisfies
relationship. It examines behavioral specifications, structural specifications, and properties of
specifications. It compares the strengths and weaknesses of various classes of FMs. It looks at the
users and uses of FMs, as well as examining how various FMs can be used during each phase of the
product lifecycle. It provides a partial taxonomy of types of FMs. It briefly compares Z, VDM and
Larch. Finally, this paper examines the limits of FMs.

A3

